
 1

University of Dublin

TRINITY COLLEGE

Dense Matrix Gauss-Jordan Inversion Auto-
Optimisation on Multicore Systems

Ross Wynne
B.A.(Mod.) Computer Science
Final Year Project May 2007
Supervisor: Dr. David Gregg

School of Computer Science and Statistics

O’Reilly Institute, Trinity College, Dublin 2, Ireland

 2

Declaration

I hereby declare that this thesis is entirely my own work and that it

has not been submitted as an exercise for a degree at any other

university.

______________________________ May 4th, 2007

Ross Wynne

 3

Acknowledgements
I wish to thank David Gregg for supervising this project and for his

helpful insight and encouragement throughout the year. My tutor,

Donal O’Donovan, who taught me much of the mathematical

knowledge that was used in this project. I also wish to thank Fiona

van der Puil for her unwavering support and love throughout the

years.

 4

Abstract
This project examines if Gauss-Jordan Matrix Inversion on a dense

matrix can be optimised by parallelisation of the core algorithm and

investigates the relationship of speed up efficiencies using multi-

core and single processor systems.

 5

Table of Contents

Section Page

Abstract 4

1. Introduction 6

 1.1 Matrix Inversion 6

 1.2 Gauss-Jordan Inversion 7

 1.3 Example 8

 1.4 Conclusion 8

2. Planning and Design 9

 2.1 High Level Objectives and Aims 9

 2.2 Design Decisions 10

 2.2.1 Programming Language 10

 2.2.2 Mathematical Techniques 11

 2.2.3 Algorithm Design 13

 2.2.4 Algorithm Parallelisation 13

 2.2.5 Sample Matrices 14

 2.2.6 Compilers 15

3. Implementation and Methods 16

 3.1 Program Outline 16

 3.2 Optimisation 16

 3.2.1 Stage One 16

 3.2.2 Stage Two 17

 3.3 Generalised Structure 17

 3.4 Implementation Decisions 18

 3.5 Problems Encountered 19

 3.6 Function Descriptions 19

4. Results and Analysis 21

 4.1 Definition of Speed Up 21

 4.2 Dataset Results 22

5. Summery 29

Bibliography 30

 6

 Chapter 1

Introduction to Problem Description

1.1 Matrix Inversion

The inverse of a matrix is defined as A.A-1=I (where I is the identity

matrix). A matrix is defined as invertible if and only if the

determinate of the matrix is ≠ 0 and the matrix is square (i.e.

NxN).

There are many various matrix inversion techniques such as Gauss-

Jordan Inversion, Crammers Rule (co-factors), LU decomposition,

singular value decomposition and blockwise inversion. However all

but Gauss-Jordan Inversion and LU decomposition are inefficient for

large matrices and as such are rarely used in applications such an

image processing and scientific data processing.

The classical use of an inverted matrix is to solve:

!

A.x = b

where:

A is a matrix that represents the series of co-efficients of variables

in a set of simultaneous equations.

x is the vector set of variables to be solved

and b is the vector set of solutions

By using matrix inversion the solution becomes a trivial matter of

matrix-vector multiplication.

!

A
"1
.A.x = A

"1
b

⇒

!

x = A
"1
b

 7

1.2 Gauss-Jordan Inversion

Gauss-Jordan Inversion is a two-stage process whereby Gaussian

Elimination is performed first so as to reduce the matrix to ‘reduced

row echelon form’ by using elementary row reduction so that the

lower matrix (i.e. below the main diagonal) is filled with zeros. The

second stage is where the upper triangle is similarly reduced to

zeros. In the mean time a second matrix that starts as the Identity

Matrix has each elementary row operation that was applied to the

first matrix applied to it.

 8

1.3 Example

Take a 3x3 matrix A and an identity matrix:

!

1 2 1

2 9 2

1 7 2

"

$
$
$

%

&

'
'
'

1 0 0

0 1 0

0 0 1

"

$
$
$

%

&

'
'
'

!

1 2 1

0 5 0

0 5 1

"

$
$
$

%

&

'
'
'

1 0 0

(2 1 0

(1 0 1

"

$
$
$

%

&

'
'
'
R2=R2-2*R1 AND R3=R3-R1

!

1 2 1

0 1 0

0 5 1

"

$
$
$

%

&

'
'
'

1 0 0

(0.4 0.2 0

(1 0 1

"

$
$
$

%

&

'
'
'
R2=R2/5

!

1 2 1

0 1 0

0 0 1

"

$
$
$

%

&

'
'
'

1 0 0

(0.4 0.2 0

1 (1 1

"

$
$
$

%

&

'
'
'
R3=R3-5*R2

!

1 2 0

0 1 0

0 0 1

"

$
$
$

%

&

'
'
'

0 1 (1

(0.4 0.2 0

1 (1 1

"

$
$
$

%

&

'
'
'
R1=R1-R3

!

1 0 0

0 1 0

0 0 1

"

$
$
$

%

&

'
'
'

0.8 0.6 (1

(0.4 0.2 0

1 (1 1

"

$
$
$

%

&

'
'
'
R1=R1-2*R2

The second matrix now contains the inverse matrix of A.

1.4 Conclusion

Gauss-Jordan Inversion is an O(N3) problem and hence any method

that speeds up the computation of the problem is helpful. The

ultimate goal of this project is to compute the task in a manner

faster that previously available.

 9

Chapter 2

Planning and Design

2.1 High Level Objectives and Aims

The aim of this design phase is to outline the high-level aim for

what the proof-of-concept project is to achieve.

1. Produce an optimised version of a Gauss-Jordan Inversion

algorithm suitable for parallelisation.

2. Produce a parallelised version of a Gauss-Jordan Inversion

algorithm.

3. Compare the run timings of any such algorithm over a base-

line comparison.

4. For various sized matrices find the most optimal algorithm

based on dimensional size, dependent on the hardware of the

system and compiler used.

5. Create a compiled function that takes into account the results

of aim number 4 and could be called upon by an external

program for processing of a square matrix.

 10

2.2 Design Decisions

2.2.1 Programming language

To choose the right programming language for the project a set of

requirements had to be met. They were:

1) Author’s prior experience

2) Language’s ability to deal with threading

3) Portability and Support

4) Fast code production

5) Environment that final generated function would be used in

Author’s prior experience

The author has previously written algorithmic code in C, C++,

Java, Eiffel and the M68k assembly language.

Language’s ability to deal with threading

Both C and C++ have the ability to use OpenMP or POSIX

threads. Java has its own threading model as well as POSIX

threading.

Portability and Support

C, C++ and Java are widely supported on multiple hardware and

operating system platforms. Other languages such as Eiffel and

Hascal do not have large communities or companies pushing

forward development.

Fast Code Production

Current C/C++ compilers such as gcc and the Intel compiler

have an array of optimisation switches for various processors

and for in-lining and loop unfolding. Java’s compiler is only

designed to produce bytecode that is translated into machine

code at runtime and although Java’s speed is catching up with

C/C++ it still is slower.

Environment

The most common computation environment would be the one

that is fast and portable and as such C or C++ would be the

 11

obvious choices so that the final Gaussian algorithm will be

compatible with other programs.

From these requirements it is obvious that the final choice of

programming language was either C or C++. The author chose to

use C++ since the memory declaration commands such as ‘new’

and ‘delete’ reduced the complexity of using malloc() to define

arrays and matrices in memory as well as avoiding any memory

leaks that may occur.

 Decision: C++ is language of choice.

2.2.2 Mathematical Techniques

Three Gaussian based algorithms are used in this project with one

acting as a base-line result. The base algorithm is a modified

version of Numerical Recipes in C++’s gaussj function.

The gaussj function is quite a complex implementation of the

Gauss-Jordan algorithm with numerous single letter variables which

make it hard to comprehend. The code itself is not directly

parallelisable and is intended to run serially. The author edited the

function’s matrix declarations to use new and delete commands as

opposed to the proprietary matrix format that Numerical Recipes

uses. By standardising the matrix format the eventual end timings

will be able to be compared and contrasted.

The first of the algorithms written by the author to which

gaussjordanSerial and gaussjordanOMP are based upon is the

classic method for a Gauss-Jordan Inversion. The first part of the

algorithm is the Gaussian Elimination technique. It requires two

matrices, the first being the original matrix and the second is an

Identity Matrix. The algorithm starts on the upper left entry of the

first matrix and, if the entry is non-zero, then elementary row

 12

operations are performed on the rows below it with the aim of

creating a column of zeros below the lead diagonal. If the entry is

zero then the whole row is swapped with a row below it that has a

non-zero entry in that same column. If there happens to be no non-

zero entries in the column then the matrix is singular and non

invertible. Once the first column is complete the next entry on the

lead diagonal will be processed.

The second part of the algorithm is a form of Gaussian Elimination

in reverse, whereby the algorithm starts on the lower right element

and uses elementary row operations on the rows above it to form a

column of zeros above the lead diagonal. This continues until the

matrix resembles an Identity Matrix.

All row operations upon the first matrix are replicated upon a

second matrix that starts out as the Identity Matrix.

Once the algorithm has completed the inverse of the original matrix

is to be found as the second matrix.

The second algorithm, to which gaussjordanSerial_Combo and

gaussjordanOMP_Combo are based, attempts to do both the first

and second stage of Gauss-Jordan Inversion at the same time. The

algorithm starts exactly like the previous one but after the first

column has been reduced to zeros (excluding the lead diagonal

value) the algorithm then performs elementary row operations on

the rows above the pivot1 value.

1 A pivot entry is the value on the lead diagonal of a matrix upon which the
calculations for that column are being processed.

 13

2.2.3. Algorithm Design

The design of each algorithm is crucial to optimising for

parallelisation. As mentioned previously the gaussj function was

complex and didn’t lend itself to having distinct independent

sections. By rewriting the algorithms from scratch it was possible to

write these sections of code so as they were independent and hence

parallelisable.

Additionally each section of the algorithmic code was designed to be

composed of simple instructions such as additions or divisions and

not function calls. By doing this it reduced the complexity of the

machine code generated by the compiler and hence would require

less processing cycles per instruction. However the more expensive

processor instructions such as multiplication and division require

sparing use, even more so in the case of division instructions since

they take more cycles per instruction than multiplications.

Decision: Write new Gauss-Jordan Inversion algorithms from

scratch and section code for efficient parallelisation.

2.2.4 Algorithm Parallelisation

The next design decision was how to implement a parallelised

algorithm. There are two standard methods to run sections of code

in parallel. The first is by using POSIX threads or pthreads as they

are more commonly known. This method requires each parallelised

section to be encapsulated as a function. However that would have

meant complicating the code further with more machine instructions

in the final compiled version.

The second method for parallelising the program is by using

OpenMP. It is a pragma based pre-processing language that is a

specification for a set of compiler directives, library routines, and

environment variables that can be used to specify memory

 14

parallelism in Fortran and C/C++ programs. It has been developed

for various computers ranging from super-computers through to

SMP servers and multicore desktops and all variations in between.

It has a documented list of requirements that code must meet for

OpenMP to be successful in parallelising ‘for’ loops which will be

predominantly used in this algorithms. They are:

1. The loop variable must be a signed integer

2. The loop condition must not change throughout the

processing of the loop.

3. That simple regular expressions are used in the loop condition

such as >, <, >=, <=

4. The loop contains no jump commands for into or out of the

loop.

5. Upon each iteration of the loop there is some form of

incrementing or decrementing of a counter such that the loop

does not run ad infinitum due to the loop condition never

registering as false.

The author chose to use OpenMP as the method of choice for

threading of the code. Its straightforward declarations allowed for

more work to be done on optimising other areas of the algorithms.

 Decision: OpenMP as API of choice

2.2.5 Sample Matrices

A range of matrix dimensions had needed to be chosen so that

algorithms could be compared in a realistic manner. Hence all

algorithms were run over a series so identical matrices from 3x3

through to 100x100 and sometimes larger dimensions if there was

an interesting trend beyond. The matrix entries are created using a

standalone program that generates a series of ten million random

signed integer values, between -4999 and 5000, and then writes

 15

them to a file. This data file is then available for providing test

values for the project’s algorithms.

 Decision: Range 3x3 -> 100x100

2.2.6 Compilers

Once the language was chosen the decision had to be took on which

compilers the program should be run under. For the sake of brevity

and keeping the number of variables within the project to a

manageable level it was decided by the author to use only 2

difference compilers. For the first choice G++ was an obvious

choice since it is most widely ported and newer versions such as 4.2

now has OpenMP support. The second compiler was dependent on if

it supported OpenMP and as such the Portland and Intel compilers

were the primary choices. Unfortunately the Portland compiler

cannot be used without having to pay for it where as the Intel

compiler allowed for a fully featured evaluation without costing

money.

Decision: G++ and Intel Compilers

 16

Chapter 3

Implementation and Methods

3.1 Program Outline

The main program is split into 10 C++ files of which 5 are header

files. There are 5 Gauss-Jordan algorithms, each made contained as

a function. In addition to this there exists a ‘wrapper’ function,

gaussjordan(), that is used in the final stage of the project when

the best algorithms for a particular range of dimensions is

established.

3.2 Optimisation

The optimisation of the gaussjordan() function is the crucial element

to the project. Within it is the method for deciding upon which

algorithm is used for a specific matrix dimension.

The determination of the value to which algorithm is used is a two

stage process.

 3.2.1 Stage One

 Upon running the ‘make all’ command a default value for

“GO_R” is read in by the compiler during pre-processing. This

starting value is arbitrary since upon first running of the

 17

program the exact crossover point between the various serial

and parallel algorithms is undetermined since not all

processors behave the same. Once the program is compiled

and run it will cycle through the various dimensional sizes

several times (as set by the “NO_AVG_VAL” variable in

main.h). The range of dimensions is set by the

“DIM_MIN_MAT” and “DIM_MAX_MAT” variables in main.h.

Upon completion of the range of dimensions the function

stati() will calculate the intersection point of the best serial

and parallel algorithm. This is done by comparing the speedup

ratios and selecting the first value where by the it and the

following two speedup ratios are greater than or equal to one.

Once this crossover value has been determined it is passed

back to the main program whereby it is written out to the

optimised.h file by the writeout() function.

3.2.2 Stage Two

 The program is then recompiled for a second time and in

doing so the gaussjordan.o object file now contains the

optimal solution for finding the best algorithm.

3.3 Generalised Structure

The main.cpp code is written as follows:

1. Load text file of randomly generated numbers into an array

2. Dimension loop that cycles through the range of dimensions

a. Repeat Loop 5 times or more to get averaged run timing

i. Create matrices in memory and load values

ii. Run each algorithm and time them individually

iii. Delete matrices in memory

b. Average the timings

3. Print out results and alter “optimised.h”

 18

This is the primary function that generates timings and allows for

comparisons to be established. The actual Gauss-Jordan Inversion

algorithms are contained in two separate files, gaussj.cpp and

gaussjordan.cpp, and are split so that the baseline function and

authors created functions are kept distantly separate for easy of

readability.

3.4 Implementation Decisions

There are a number of variables beyond the code that needed to be

reduced so that it is manageable from a programming point of view.

One of which was which optimisation level was to be passed to the

compiler at runtime. From experimentation O2 level optimisation

was superior to both O1 and O3 options. As such the

implementation decision was that O2 optimisation was the default

for the project for both compilers.

Additionally there was a choice to be made between the variable

type of the matrices with either float or double being the realistic

types. Under testing conditions both behaved in a similar way and

so it was not a critical issue when it came to discussing the results

and conclusion so it was decided that floats would be the default

type. It is however possible to swap between floats and doubles by

editing a single line in main.h.

Finally since this is a proof of concept rather than a full

implementation it was decided that, given that there are 5

competing algorithms to compare for which is the best one given a

specific dimension, the problem was minimised to choosing between

the best two solutions (one serial and one parallel) that were found

through experimentation. As such the gaussjordan() function

chooses between gaussjordanSerial_Combo() and

gaussjordanOMP_Combo().

 19

3.5 Problems Encountered

When trying to calculate the number of processing cycles each

function took to complete it was found to be impossible to

accurately use the Intel processor instruction, RDTSC. The RDTSC

instruction works by counting the number of processor ‘ticks’ that

goes by as a function is run. Since multi-core and SMP systems

often transfer a running program and/or threads between

processors any counting method relying on a single processor is

likely to fail unless its affinity is set to a single processor, but in

doing so setting an affinity it is relatively pointless to test a

parallelised algorithm since threading on a single processor doesn’t

improve the performance.

3.6 Function Descriptions

gaussj():

This is the baseline function to which the other Gauss-Jordan

Inverse functions are compared. It is from the text Numerical

Recipes in C++ (2nd edition)[1] which contains what would be

best described as the defacto standard for numerical

computing.

gaussjordanSerial():

 This non-parallelised algorithm is written to follow the

classical technique for Gauss-Jordan Inversion of reducing the lower

triangle of the first matrix to zeros and then repeating the same

steps on the upper triangle.

gaussjordanOMP():

 This algorithm has the same code as the gaussjordanSerial()

function except that it also contains OpenMP pragma statements.

Both commands for optimising for-loops and for separating

 20

sections, that can be run in parallel independently, are used in the

code.

gaussjordanSerial_Combo():

 Instead of being systematic in waiting for the first matrix’s

lower triangle to be reduced to zeros the code is set up as such that

both upper and lower triangles are reduced via elementary row

operations at the same time and not in the two stage process that

the previous algorithms used.

gaussjordanOMP_Combo():

This algorithm is identical in structure to

gaussjordanSerial_Combo() except that it has several OpenMP

pragma statements placed in it to parallelise the function.

gaussjordan():

This is the wrapper algorithm that uses the “GO_R” value set in

optimised.h to decide the point whereby it switches between using

serial and parallel versions.

 21

Chapter 4
Results and Analysis

To properly discuss the results a quantitative measuring scale must

be established that will give a meaningful context to the timing

data. As such both the physical timings are discussed as well as the

speedup ratio of the baseline algorithm to the 4 other algorithms.

4.1 Definition of Speed Up

!

S
i
=
T
B

T
i

where:

TB=timing of baseline algorithm over a specific matrix dimension

Ti=timing of test algorithm over the same matrix dimension

Si=Speedup Ratio for the specific dimension

So:

When S<1 then the test algorithm is slower than the baseline

algorithm

When S=1 then the test algorithm is no faster nor slower than the

baseline algorithm

When S>1 then the test algorithm is faster than the baseline

algorithm

Note: The 5 algorithms were run on various hardware ranging from

a single core PII, a Core2Duo dual-core processor to a Core2Quad

processor and represent.

 22

4.2 Dataset results

Serial Performance (timing) – Pentium II

Figure1: Timings taken on a single Pentium II 450Mhz w/ 512Kb cache using

g++ version 3.4.4 and with the -O2 compile switch.

As is clear from the timings graph the baseline algorithm takes

longer than either of the two serial versions. This is especially

evident at the 37 mark and larger. Overall the

gaussjordanSerial_Combo seem to be marginally faster than the

gaussjordanSerial algorithm.

 23

 Serial Performance (Speedup Ratio) – Pentium II

Figure1b: Speedup based on a single Pentium II 450Mhz w/ 512Kb cache using

g++ version 3.4.4 and with the -O2 compile switch.

The trend that is visible is that at no time does the baseline

algorithm register as the fastest method. Indeed both the

gaussjordanSerial and gaussjordanSerial_Combo functions are

between 1.6 and 2.5 times faster than gaussj over the range 3

through 300. However at 155 it is clear that something has changed

with the implementation of the algorithm since there are some

higher and lower peaks. It is probable that there is a hardware

limitation that is slowing data from being sent to the processor in a

timely fashion since at 151x151 a matrix would be approximately

700Kbits in size. The author would theorise that this is undoubtedly

related to either front side bus speed or cache size.

 24

Serial Performance (Speedup) – Core2Duo

Figure2a: Timings taken on a Core2Duo processor 2.33Ghz w/ 4Mb cache using

g++ version 4.0.1 and with the -O2 compile switch with OpenMP flag off.

Again the choice of processor does little to change the speedup

ratio’s implications that the gaussj() function is still the worst

performing Gauss-Jordan Inversion algorithm for serialised use

compared with the two other algorithms.

Also the gaussjordanSerial_combo() algorithm is still faster of the

two algorithms written by the author.

 25

Parallel Performance (Timing) – Core2Duo

Figure 2b: Timings taken on a Core2Duo processor 2.33Ghz w/ 4Mb cache using

Intel compiler version 9.1.039 with the -O2 compile switch and OpenMP flag On.

Interesting events occur when examining the performance of the

parallel algorithm in relation to the serial algorithm. At a dimension

of 43 it is clear that the gaussjordanOMP algorithm is faster than

either of the three serial implementations. The

gaussjordanOMP_Combo algorithm becomes the faster than the

serial versions at approximately 53. Before wither of these points

the obvious optimal algorithm is the gaussjordanSerial_Combo.

It is interesting to note that the serial combination algorithm is

continually faster than the two stage version but when comparing

parallel algorithms it is clear that for values before 83 the parallel

 26

combination algorithm has a lower speedup ratio than the two stage

version.

In fulfilling this project it was required to create a ‘wrapper function’

that generally performed the fastest algorithm at each dimension.

As such an overall gaussjordan() function was used.

Figure 2c: Timings taken on a Core2Duo processor 2.33Ghz w/ 4Mb cache using

Intel compiler version 9.1.039 with the -O2 compile switch and OpenMP flag On.

When examining the general trend it is clear that the gaussjordan()

wrapper uses the most optimal algorithm based on dimension size.

As such it has used the intersection point found on a prior run to

optimally change algorithm implementation.

The various peaks and troughs are probably cache-misses and a

also a result of running the computation on a busy system.

 27

Parallel Performance (Timing) – Core2Quad

Figure 3a: Timings taken on a Core2Quad processor 1.86Ghz w/ 4Mb cache

using Intel compiler version 9.1.046 with the -O2 compile switch and OpenMP

flag On.

Again the values follow a similar pattern to the previous example

except for the fact that the parallel combination algorithm is faster

than the other parallel version over all values.

 28

Over a larger dataset:

Figure 3a: Timings taken on a Core2Quad processor 1.86Ghz w/ 4Mb cache

using Intel compiler version 9.1.046 with the -O2 compile switch and OpenMP

flag On.

What is very interesting to see here is that both parallel algorithms

seem to have peek efficiencies approximately at 870 for the

gaussjordanOMP() and at 899 for the gaussjordanOMP_Combo().

This implies that beyond this point the use of computing clusters

may be a good way of continuing the remarkable speedup ratios.

 29

Chapter 5

Summery

5.1 Conclusion

In conclusion the project has succeeded in its general aims of:

1) Creating a faster Gauss-Jordan Inversion algorithm compared

to the baseline algorithm

2) Creating a parallelised Gauss-Jordan algorithm that produces

significant speedups to warrant use in an everyday

computation environment

3) Finding the most optimal algorithm for an inversion relative to

dimensional size for specific hardware and processor.

4) Producing an object function that is usable in external

applications that require the best solution for the hardware it

is run under.

5.2 Future Work

Work that would be of interest would be rewriting the main

algorithms using SSE commands. Vectorisation of the values you

significantly improve performance especially when using floats

where 4 32bit values could be packed in a 128bit SSE native value.

Also running the parallelised code over a cluster could probably

increase the maximum speed up efficiencies of each algorithm over

very large matrices.

 30

Bibliography
[1] Numerical Recipes in C++ (Second Edition)

http://www.amazon.com/exec/obidos/ASIN/0521750334/numerical

recipes

[2] Elementary Row Operations defined

http://en.wikipedia.org/wiki/Elementary_matrix_transformations

[3] Anton, Rorres: Elementary Linear Algebra with Applications, 9th

Edition

[4] Inside the Intel Compiler

http://www.linuxjournal.com/article/4885

[5] Intel Compiler Documentation

http://www.intel.com

[6] Information on algorithmic speedup evaluation

http://en.wikipedia.org/wiki/Speedup

[7] SSE Documentation

http://developer.apple.com/documentation/Performance/Conceptua

l/Accelerate_sse_migration/migration_sse_C/chapter_3_section_2.h

tml

[8] Timing in C code

http://rabbit.eng.miami.edu/info/functions/time.html

[9] Introduction to the Streaming SIMD Extensions in the Pentium

III

http://x86.ddj.com/articles/sse_pt2/simd2.htm

[10] Introduction to SSE Programming

http://www.codeproject.com/cpp/sseintro.asp

[11] Gauss-Jordan Elimination

http://en.wikipedia.org/wiki/Gauss-Jordan_elimination

[12] Row Reduction on Matrices

http://www.mcraefamily.com/mathhelp/MatrixReducedRowEchelonF

orm.htm

 31

[13] OpenMP Website

http://www.openmp.org/
[14] An introduction to OpenMP without agonizing pain – Dr
David Gregg
[15] Cell Programming Introduction
http://www.blachford.info/computer/Cell/Cell0_v2.html
[16] Introduction to Cell Programming
IBM Course (TCD)

