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Abstract 
This project examines if Gauss-Jordan Matrix Inversion on a dense 

matrix can be optimised by parallelisation of the core algorithm and 

investigates the relationship of speed up efficiencies using multi-

core and single processor systems. 
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 Chapter 1 

Introduction to Problem Description 
 

1.1 Matrix Inversion 

The inverse of a matrix is defined as A.A-1=I (where I is the identity 

matrix). A matrix is defined as invertible if and only if the 

determinate of the matrix is ≠ 0 and the matrix is square (i.e. 

NxN). 

 

There are many various matrix inversion techniques such as Gauss-

Jordan Inversion, Crammers Rule (co-factors), LU decomposition, 

singular value decomposition and blockwise inversion. However all 

but Gauss-Jordan Inversion and LU decomposition are inefficient for 

large matrices and as such are rarely used in applications such an 

image processing and scientific data processing. 

 

The classical use of an inverted matrix is to solve: 

! 

A.x = b  

where: 

A is a matrix that represents the series of co-efficients of variables 

in a set of simultaneous equations. 

x is the vector set of variables to be solved 

and b is the vector set of solutions 

 

By using matrix inversion the solution becomes a trivial matter of 

matrix-vector multiplication. 

! 

A
"1
.A.x = A

"1
b  

⇒ 

! 

x = A
"1
b  
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1.2 Gauss-Jordan Inversion 

 

Gauss-Jordan Inversion is a two-stage process whereby Gaussian 

Elimination is performed first so as to reduce the matrix to ‘reduced 

row echelon form’ by using elementary row reduction so that the 

lower matrix (i.e. below the main diagonal) is filled with zeros. The 

second stage is where the upper triangle is similarly reduced to 

zeros. In the mean time a second matrix that starts as the Identity 

Matrix has each elementary row operation that was applied to the 

first matrix applied to it. 
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1.3 Example 

Take a 3x3 matrix A and an identity matrix: 
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The second matrix now contains the inverse matrix of A. 

 

1.4 Conclusion 

Gauss-Jordan Inversion is an O(N3) problem and hence any method 

that speeds up the computation of the problem is helpful. The 

ultimate goal of this project is to compute the task in a manner 

faster that previously available. 
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Chapter 2 

Planning and Design 
 

 

 

 

2.1 High Level Objectives and Aims 

 

The aim of this design phase is to outline the high-level aim for 

what the proof-of-concept project is to achieve. 

1. Produce an optimised version of a Gauss-Jordan Inversion 

algorithm suitable for parallelisation. 

2. Produce a parallelised version of a Gauss-Jordan Inversion 

algorithm. 

3. Compare the run timings of any such algorithm over a base-

line comparison. 

4. For various sized matrices find the most optimal algorithm 

based on dimensional size, dependent on the hardware of the 

system and compiler used. 

5. Create a compiled function that takes into account the results 

of aim number 4 and could be called upon by an external 

program for processing of a square matrix. 
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2.2 Design Decisions 

 

2.2.1 Programming language 

To choose the right programming language for the project a set of 

requirements had to be met. They were: 

1) Author’s prior experience 

2) Language’s ability to deal with threading 

3) Portability and Support 

4) Fast code production 

5) Environment that final generated function would be used in 

Author’s prior experience 

The author has previously written algorithmic code in C, C++, 

Java, Eiffel and the M68k assembly language. 

Language’s ability to deal with threading 

Both C and C++ have the ability to use OpenMP or POSIX 

threads. Java has its own threading model as well as POSIX 

threading. 

Portability and Support 

C, C++ and Java are widely supported on multiple hardware and 

operating system platforms. Other languages such as Eiffel and 

Hascal do not have large communities or companies pushing 

forward development. 

Fast Code Production 

Current C/C++ compilers such as gcc and the Intel compiler 

have an array of optimisation switches for various processors 

and for in-lining and loop unfolding. Java’s compiler is only 

designed to produce bytecode that is translated into machine 

code at runtime and although Java’s speed is catching up with 

C/C++ it still is slower. 

Environment 

The most common computation environment would be the one 

that is fast and portable and as such C or C++ would be the 
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obvious choices so that the final Gaussian algorithm will be 

compatible with other programs. 

 

From these requirements it is obvious that the final choice of 

programming language was either C or C++. The author chose to 

use C++ since the memory declaration commands such as ‘new’ 

and ‘delete’ reduced the complexity of using malloc() to define 

arrays and matrices in memory as well as avoiding any memory 

leaks that may occur. 

 Decision: C++ is language of choice. 

 

2.2.2 Mathematical Techniques 

Three Gaussian based algorithms are used in this project with one 

acting as a base-line result. The base algorithm is a modified 

version of Numerical Recipes in C++’s gaussj function. 

 

The gaussj function is quite a complex implementation of the 

Gauss-Jordan algorithm with numerous single letter variables which 

make it hard to comprehend. The code itself is not directly 

parallelisable and is intended to run serially. The author edited the 

function’s matrix declarations to use new and delete commands as 

opposed to the proprietary matrix format that Numerical Recipes 

uses. By standardising the matrix format the eventual end timings 

will be able to be compared and contrasted. 

 

The first of the algorithms written by the author to which 

gaussjordanSerial and gaussjordanOMP are based upon is the 

classic method for a Gauss-Jordan Inversion. The first part of the 

algorithm is the Gaussian Elimination technique. It requires two 

matrices, the first being the original matrix and the second is an 

Identity Matrix. The algorithm starts on the upper left entry of the 

first matrix and, if the entry is non-zero, then elementary row 
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operations are performed on the rows below it with the aim of 

creating a column of zeros below the lead diagonal. If the entry is 

zero then the whole row is swapped with a row below it that has a 

non-zero entry in that same column. If there happens to be no non-

zero entries in the column then the matrix is singular and non 

invertible. Once the first column is complete the next entry on the 

lead diagonal will be processed. 

 

The second part of the algorithm is a form of Gaussian Elimination 

in reverse, whereby the algorithm starts on the lower right element 

and uses elementary row operations on the rows above it to form a 

column of zeros above the lead diagonal. This continues until the 

matrix resembles an Identity Matrix. 

 

All row operations upon the first matrix are replicated upon a 

second matrix that starts out as the Identity Matrix. 

 

Once the algorithm has completed the inverse of the original matrix 

is to be found as the second matrix. 

 

The second algorithm, to which gaussjordanSerial_Combo and 

gaussjordanOMP_Combo are based, attempts to do both the first 

and second stage of Gauss-Jordan Inversion at the same time. The 

algorithm starts exactly like the previous one but after the first 

column has been reduced to zeros (excluding the lead diagonal 

value) the algorithm then performs elementary row operations on 

the rows above the pivot1 value. 

 

 

 
                                                
1 A pivot entry is the value on the lead diagonal of a matrix upon which the 
calculations for that column are being processed. 
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2.2.3. Algorithm Design 

The design of each algorithm is crucial to optimising for 

parallelisation. As mentioned previously the gaussj function was 

complex and didn’t lend itself to having distinct independent 

sections. By rewriting the algorithms from scratch it was possible to 

write these sections of code so as they were independent and hence 

parallelisable. 

 

Additionally each section of the algorithmic code was designed to be 

composed of simple instructions such as additions or divisions and 

not function calls. By doing this it reduced the complexity of the 

machine code generated by the compiler and hence would require 

less processing cycles per instruction. However the more expensive 

processor instructions such as multiplication and division require 

sparing use, even more so in the case of division instructions since 

they take more cycles per instruction than multiplications. 

Decision: Write new Gauss-Jordan Inversion algorithms from 

scratch and section code for efficient parallelisation. 

 

2.2.4 Algorithm Parallelisation 

The next design decision was how to implement a parallelised 

algorithm. There are two standard methods to run sections of code 

in parallel. The first is by using POSIX threads or pthreads as they 

are more commonly known. This method requires each parallelised 

section to be encapsulated as a function. However that would have 

meant complicating the code further with more machine instructions 

in the final compiled version. 

  

The second method for parallelising the program is by using 

OpenMP. It is a pragma based pre-processing language that is a 

specification for a set of compiler directives, library routines, and 

environment variables that can be used to specify memory 
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parallelism in Fortran and C/C++ programs. It has been developed 

for various computers ranging from super-computers through to 

SMP servers and multicore desktops and all variations in between. 

It has a documented list of requirements that code must meet for 

OpenMP to be successful in parallelising ‘for’ loops which will be 

predominantly used in this algorithms. They are: 

 

1. The loop variable must be a signed integer 

2. The loop condition must not change throughout the 

processing of the loop. 

3. That simple regular expressions are used in the loop condition 

such as >, <, >=, <= 

4. The loop contains no jump commands for into or out of the 

loop. 

5. Upon each iteration of the loop there is some form of 

incrementing or decrementing of a counter such that the loop 

does not run ad infinitum due to the loop condition never 

registering as false. 

The author chose to use OpenMP as the method of choice for 

threading of the code. Its straightforward declarations allowed for 

more work to be done on optimising other areas of the algorithms. 

 Decision: OpenMP as API of choice 

 

2.2.5 Sample Matrices 

A range of matrix dimensions had needed to be chosen so that 

algorithms could be compared in a realistic manner. Hence all 

algorithms were run over a series so identical matrices from 3x3 

through to 100x100 and sometimes larger dimensions if there was 

an interesting trend beyond. The matrix entries are created using a 

standalone program that generates a series of ten million random 

signed integer values, between -4999 and 5000, and then writes 
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them to a file. This data file is then available for providing test 

values for the project’s algorithms. 

 Decision: Range 3x3 -> 100x100 

 

2.2.6 Compilers 

Once the language was chosen the decision had to be took on which 

compilers the program should be run under. For the sake of brevity 

and keeping the number of variables within the project to a 

manageable level it was decided by the author to use only 2 

difference compilers. For the first choice G++ was an obvious 

choice since it is most widely ported and newer versions such as 4.2 

now has OpenMP support. The second compiler was dependent on if 

it supported OpenMP and as such the Portland and Intel compilers 

were the primary choices. Unfortunately the Portland compiler 

cannot be used without having to pay for it where as the Intel 

compiler allowed for a fully featured evaluation without costing 

money. 

Decision: G++ and Intel Compilers
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Chapter 3 

Implementation and Methods 
 

3.1 Program Outline 

The main program is split into 10 C++ files of which 5 are header 

files. There are 5 Gauss-Jordan algorithms, each made contained as 

a function. In addition to this there exists a ‘wrapper’ function, 

gaussjordan(), that is used in the final stage of the project when 

the best algorithms for a particular range of dimensions is 

established. 

 

3.2 Optimisation 

The optimisation of the gaussjordan() function is the crucial element 

to the project. Within it is the method for deciding upon which 

algorithm is used for a specific matrix dimension. 

The determination of the value to which algorithm is used is a two 

stage process. 

 3.2.1 Stage One 

 Upon running the ‘make all’ command a default value for 

“GO_R” is read in by the compiler during pre-processing. This 

starting value is arbitrary since upon first running of the 



 17 

program the exact crossover point between the various serial 

and parallel algorithms is undetermined since not all 

processors behave the same. Once the program is compiled 

and run it will cycle through the various dimensional sizes 

several times (as set by the “NO_AVG_VAL” variable in 

main.h). The range of dimensions is set by the 

“DIM_MIN_MAT” and “DIM_MAX_MAT” variables in main.h. 

Upon completion of the range of dimensions the function 

stati() will calculate the intersection point of the best serial 

and parallel algorithm. This is done by comparing the speedup 

ratios and selecting the first value where by the it and the 

following two speedup ratios are greater than or equal to one. 

Once this crossover value has been determined it is passed 

back to the main program whereby it is written out to the 

optimised.h file by the writeout() function. 

3.2.2 Stage Two 

 The program is then recompiled for a second time and in 

doing so the gaussjordan.o object file now contains the 

optimal solution for finding the best algorithm. 

 

3.3 Generalised Structure 

The main.cpp code is written as follows: 

1. Load text file of randomly generated numbers into an array 

2. Dimension loop that cycles through the range of dimensions 

a. Repeat Loop 5 times or more to get averaged run timing 

i. Create matrices in memory and load values 

ii. Run each algorithm and time them individually 

iii. Delete matrices in memory 

b. Average the timings 

3. Print out results and alter “optimised.h” 
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This is the primary function that generates timings and allows for 

comparisons to be established. The actual Gauss-Jordan Inversion 

algorithms are contained in two separate files, gaussj.cpp and 

gaussjordan.cpp, and are split so that the baseline function and 

authors created functions are kept distantly separate for easy of 

readability. 

 

3.4 Implementation Decisions 

There are a number of variables beyond the code that needed to be 

reduced so that it is manageable from a programming point of view. 

One of which was which optimisation level was to be passed to the 

compiler at runtime. From experimentation O2 level optimisation 

was superior to both O1 and O3 options. As such the 

implementation decision was that O2 optimisation was the default 

for the project for both compilers. 

Additionally there was a choice to be made between the variable 

type of the matrices with either float or double being the realistic 

types. Under testing conditions both behaved in a similar way and 

so it was not a critical issue when it came to discussing the results 

and conclusion so it was decided that floats would be the default 

type. It is however possible to swap between floats and doubles by 

editing a single line in main.h. 

Finally since this is a proof of concept rather than a full 

implementation it was decided that, given that there are 5 

competing algorithms to compare for which is the best one given a 

specific dimension, the problem was minimised to choosing between 

the best two solutions (one serial and one parallel) that were found 

through experimentation. As such the gaussjordan() function 

chooses between gaussjordanSerial_Combo() and 

gaussjordanOMP_Combo(). 
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3.5 Problems Encountered 

When trying to calculate the number of processing cycles each 

function took to complete it was found to be impossible to 

accurately use the Intel processor instruction, RDTSC. The RDTSC 

instruction works by counting the number of processor ‘ticks’ that 

goes by as a function is run. Since multi-core and SMP systems 

often transfer a running program and/or threads between 

processors any counting method relying on a single processor is 

likely to fail unless its affinity is set to a single processor, but in 

doing so setting an affinity it is relatively pointless to test a 

parallelised algorithm since threading on a single processor doesn’t 

improve the performance. 

 

3.6 Function Descriptions 

gaussj(): 

This is the baseline function to which the other Gauss-Jordan 

Inverse functions are compared. It is from the text Numerical 

Recipes in C++ (2nd edition)[1] which contains what would be 

best described as the defacto standard for numerical 

computing. 

 

gaussjordanSerial(): 

 This non-parallelised algorithm is written to follow the 

classical technique for Gauss-Jordan Inversion of reducing the lower 

triangle of the first matrix to zeros and then repeating the same 

steps on the upper triangle. 

 

gaussjordanOMP(): 

 This algorithm has the same code as the gaussjordanSerial() 

function except that it also contains OpenMP pragma statements. 

Both commands for optimising for-loops and for separating 
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sections, that can be run in parallel independently, are used in the 

code. 

 

gaussjordanSerial_Combo(): 

 Instead of being systematic in waiting for the first matrix’s 

lower triangle to be reduced to zeros the code is set up as such that 

both upper and lower triangles are reduced via elementary row 

operations at the same time and not in the two stage process that 

the previous algorithms used. 

 

gaussjordanOMP_Combo(): 

This algorithm is identical in structure to 

gaussjordanSerial_Combo() except that it has several OpenMP 

pragma statements placed in it to parallelise the function. 

 

gaussjordan(): 

This is the wrapper algorithm that uses the “GO_R” value set in 

optimised.h to decide the point whereby it switches between using 

serial and parallel versions. 
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Chapter 4 
Results and Analysis 

 

To properly discuss the results a quantitative measuring scale must 

be established that will give a meaningful context to the timing 

data. As such both the physical timings are discussed as well as the 

speedup ratio of the baseline algorithm to the 4 other algorithms. 

 

4.1 Definition of Speed Up 

 

! 

S
i
=
T
B

T
i

 

where: 

TB=timing of baseline algorithm over a specific matrix dimension 

Ti=timing of test algorithm over the same matrix dimension 

Si=Speedup Ratio for the specific dimension 

 

So: 

When S<1 then the test algorithm is slower than the baseline 

algorithm 

When S=1 then the test algorithm is no faster nor slower than the 

baseline algorithm 

When S>1 then the test algorithm is faster than the baseline 

algorithm 

 

Note: The 5 algorithms were run on various hardware ranging from 

a single core PII, a Core2Duo dual-core processor to a Core2Quad 

processor and represent. 
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4.2 Dataset results 

 

Serial Performance (timing) – Pentium II 

 
Figure1: Timings taken on a single Pentium II 450Mhz w/ 512Kb cache using 

g++ version 3.4.4 and with the -O2 compile switch. 

 

As is clear from the timings graph the baseline algorithm takes 

longer than either of the two serial versions. This is especially 

evident at the 37 mark and larger. Overall the 

gaussjordanSerial_Combo seem to be marginally faster than the 

gaussjordanSerial algorithm. 
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 Serial Performance (Speedup Ratio) – Pentium II 

 

 

Figure1b: Speedup based on a single Pentium II 450Mhz w/ 512Kb cache using 

g++ version 3.4.4 and with the -O2 compile switch. 

 

The trend that is visible is that at no time does the baseline 

algorithm register as the fastest method. Indeed both the 

gaussjordanSerial and gaussjordanSerial_Combo functions are 

between 1.6 and 2.5 times faster than gaussj over the range 3 

through 300. However at 155 it is clear that something has changed 

with the implementation of the algorithm since there are some 

higher and lower peaks. It is probable that there is a hardware 

limitation that is slowing data from being sent to the processor in a 

timely fashion since at 151x151 a matrix would be approximately 

700Kbits in size. The author would theorise that this is undoubtedly 

related to either front side bus speed or cache size.
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Serial Performance (Speedup) – Core2Duo 

 

 
Figure2a: Timings taken on a Core2Duo processor 2.33Ghz w/ 4Mb cache using 

g++ version 4.0.1 and with the -O2 compile switch with OpenMP flag off. 

 

Again the choice of processor does little to change the speedup 

ratio’s implications that the gaussj() function is still the worst 

performing Gauss-Jordan Inversion algorithm for serialised use 

compared with the two other algorithms. 

Also the gaussjordanSerial_combo() algorithm is still faster of the 

two algorithms written by the author.



 25 

Parallel Performance (Timing) – Core2Duo 

 

 
Figure 2b: Timings taken on a Core2Duo processor 2.33Ghz w/ 4Mb cache using 

Intel compiler version 9.1.039 with the -O2 compile switch and OpenMP flag On. 

 

Interesting events occur when examining the performance of the 

parallel algorithm in relation to the serial algorithm. At a dimension 

of 43 it is clear that the gaussjordanOMP algorithm is faster than 

either of the three serial implementations. The 

gaussjordanOMP_Combo algorithm becomes the faster than the 

serial versions at approximately 53. Before wither of these points 

the obvious optimal algorithm is the gaussjordanSerial_Combo. 

It is interesting to note that the serial combination algorithm is 

continually faster than the two stage version but when comparing 

parallel algorithms it is clear that for values before 83 the parallel 
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combination algorithm has a lower speedup ratio than the two stage 

version. 

In fulfilling this project it was required to create a ‘wrapper function’ 

that generally performed the fastest algorithm at each dimension. 

As such an overall gaussjordan() function was used. 

 
Figure 2c: Timings taken on a Core2Duo processor 2.33Ghz w/ 4Mb cache using 

Intel compiler version 9.1.039 with the -O2 compile switch and OpenMP flag On. 

 

When examining the general trend it is clear that the gaussjordan() 

wrapper uses the most optimal algorithm based on dimension size. 

As such it has used the intersection point found on a prior run to 

optimally change algorithm implementation. 

The various peaks and troughs are probably cache-misses and a 

also a result of running the computation on a busy system. 
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Parallel Performance (Timing) – Core2Quad 

 

 
Figure 3a: Timings taken on a Core2Quad processor 1.86Ghz w/ 4Mb cache 

using Intel compiler version 9.1.046 with the -O2 compile switch and OpenMP 

flag On. 

 

Again the values follow a similar pattern to the previous example 

except for the fact that the parallel combination algorithm is faster 

than the other parallel version over all values. 
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Over a larger dataset: 

  

Figure 3a: Timings taken on a Core2Quad processor 1.86Ghz w/ 4Mb cache 

using Intel compiler version 9.1.046 with the -O2 compile switch and OpenMP 

flag On. 

What is very interesting to see here is that both parallel algorithms 

seem to have peek efficiencies approximately at 870 for the 

gaussjordanOMP() and at 899 for the gaussjordanOMP_Combo(). 

This implies that beyond this point the use of computing clusters 

may be a good way of continuing the remarkable speedup ratios. 
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Chapter 5 

Summery 

5.1 Conclusion 

In conclusion the project has succeeded in its general aims of: 

1) Creating a faster Gauss-Jordan Inversion algorithm compared 

to the baseline algorithm 

2) Creating a parallelised Gauss-Jordan algorithm that produces 

significant speedups to warrant use in an everyday 

computation environment 

3) Finding the most optimal algorithm for an inversion relative to 

dimensional size for specific hardware and processor. 

4) Producing an object function that is usable in external 

applications that require the best solution for the hardware it 

is run under. 

 

5.2 Future Work 

Work that would be of interest would be rewriting the main 

algorithms using SSE commands. Vectorisation of the values you 

significantly improve performance especially when using floats 

where 4 32bit values could be packed in a 128bit SSE native value. 

Also running the parallelised code over a cluster could probably 

increase the maximum speed up efficiencies of each algorithm over 

very large matrices. 
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